Индексировано в
  • Open J Gate
  • Журнал GenamicsSeek
  • ЖурналTOCs
  • Китайская национальная инфраструктура знаний (CNKI)
  • Библиотека электронных журналов
  • RefSeek
  • Университет Хамдарда
  • ЭБСКО АЗ
  • OCLC- WorldCat
  • Интернет-каталог SWB
  • Виртуальная биологическая библиотека (вифабио)
  • Паблоны
  • МИАР
  • Евро Паб
  • Google Scholar
Поделиться этой страницей
Флаер журнала
Flyer image

Абстрактный

Oil and Gas Well Production Forecasting Based on Machine Learning Models: The Volve Field Case

Moreno Millan

The current techniques for predicting the oil and gas production flow rates at well and reservoir scales include from the classical decline curves analysis thru numerical simulation models. The present work proposes the use of the following Machine Learning Models (MLM): Linear Regression (LR), Support Vector Machines (SVM), Random Forest (RF), and an Artificial Neural Network (ANN), as an alternative to the conventional methods for forecasting oil and gas production flow rates. The application of this proposal is demonstrated based on production data recorded along 8 years in wells from Volve field, located in the Norwegian continental shelf. Thus, the benefits for each MLM above mentioned are discussed, concluding based on a practical experience that not always the more complex algorithm is the best choice. It is demonstrated that the alternative of SVM yield best results, and it is also a simpler and easier model to be implemented in comparison to RF or ANN alternatives.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию