Индексировано в
  • Open J Gate
  • Журнал GenamicsSeek
  • Академические ключи
  • ЖурналTOCs
  • Китайская национальная инфраструктура знаний (CNKI)
  • Справочник периодических изданий Ульриха
  • RefSeek
  • Университет Хамдарда
  • ЭБСКО АЗ
  • Справочник реферативной индексации для журналов
  • OCLC- WorldCat
  • Паблоны
  • Женевский фонд медицинского образования и исследований
  • Евро Паб
  • Google Scholar
Поделиться этой страницей
Флаер журнала
Flyer image

Абстрактный

Machine Learning in Oncology: What Should Clinicians Know?

Deepak Mane

Abstract:

Over recent years, the amount and scope of scientific and clinical data in oncology has increased significantly, including but not limited to the field of electronic health data, radiographic and histological data and genomics. This growth promises a deeper understanding of malignancy and therefore personalised and more reliable oncological treatment. However, such objectives entail the creation of new methods to allow full use of the wealth of available data. Improvements in computer processing power and the advancement of algorithms have placed master learning, an artificial intelligence branch, in the field of oncology research and practise. This analysis offers a summary of the fundamentals of computer education and addresses recent advances and difficulties in the application of this technology to cancer diagnostics, prognosis, and treatment recommendations.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию