Абстрактный

Identification of Contact Pressures in Two and Three-Dimensional Solid Bodies from Cauchy Data

Kadria ML

This note deals with the identification of contact pressures in two and three-dimensional elastic bodies via two approaches relying on domain decomposition using electrostatic measurements. These approaches consist in recasting the problem in terms of primal or dual Steklov Poincar´e equations. The numerical performances of these formulations are compared. The proposed methods are applied to some inverse problems: the first application deals with the identification of a Hertizian contact pressures distribution, the second deals with the identification of the indentation pressure of a heterogeneous solid, and the third one with the identification of boundary data at the interface of a bonded structure.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию