Индексировано в
  • Open J Gate
  • Журнал GenamicsSeek
  • ЖурналTOCs
  • Китайская национальная инфраструктура знаний (CNKI)
  • Библиотека электронных журналов
  • RefSeek
  • Университет Хамдарда
  • ЭБСКО АЗ
  • OCLC- WorldCat
  • Интернет-каталог SWB
  • Виртуальная биологическая библиотека (вифабио)
  • Паблоны
  • МИАР
  • Евро Паб
  • Google Scholar
Поделиться этой страницей
Флаер журнала
Flyer image

Абстрактный

Experimental Study on the Effect of Inhibitors on Wax Deposition

Muhammad Ali Theyab* and Pedro Diaz

A challenge facing offshore oil production is wax deposition. It leads to increases in operational and remedial costs while suppressing oil production. Wax inhibitors are one of the mitigation technologies that had been examined its influence on crude oil viscosity, pour point and wax appearance temperature (WAT). The performance of some of wax inhibitors was evaluated to determine their effects on the pour point, wax appearance temperature and the viscosity of the crude oil using the programmable Rheometer rig at gradient temperatures (55°C) and shear rate 120 1/s before and after adding 1000 ppm and 2000 ppm of inhibitors to the crude oil. Three different inhibitors which were not tested before were prepared in the lab of this study. These inhibitors works well compared with its original components. The first inhibitor was coded Mix01 by mixing polyacrylate polymer (C16-C22), and copolymer + acrylated monomers. The reduction of pour point of the waxy crude oil was up to a 16.6ºC at 2000 ppm concentration and this reduces the crude oil viscosity to about 61.9% at a seabed temperature of 4ºC. The second inhibitor was coded Mix02, by mixing polyacrylate polymer (C16-C22), alkylated phenol in heavy aromatic naphtha, and copolymer dissolved in solvent naphtha. At 2000 ppm, the reduction of pour point of the crude oil up to a 15.9ºC and decreases the viscosity to 57% at a seabed temperature of 4ºC. Finally, the third inhibitor was Mix03, by mixing polyacrylate polymer (C16-C22), and brine (H2O + NaCl). At 1000 ppm concentration, the reduction of pour point of the oil was up to a 14.4ºC and reduced the viscosity to 52.5% at a seabed temperature of 4ºC. This unique blend of the inhibitory properties and significant reduction in pour point temperatures and crude oil viscosity is providing an original development in wax mitigation technology.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию