Tyler Huggins, Paul H Fallgren, Song Jin and Zhiyong Jason Ren
Microbial fuel cell (MFC) technology provides a low cost alternative to conventional aerated wastewater treatment, however, there has been little comparison between MFC and aeration treatment using real wastewater as the substrate. This study attempts to directly compare the wastewater treatment efficiency and energy consumption and generation among three reactor systems-a traditional aeration process, a simple submerged MFC configuration, and a control reactor acting similar as natural lagoons. Results showed that all three systems were able to remove >90% of COD, but the aeration used shorter time (8 days) than the MFC (10 days) and control reactor (25 days). Compared to aeration, the MFC showed lower removal efficiency in high COD concentration, but much higher efficiency when the COD is low. Only the aeration system showed complete nitrification during the operation, reflected by completed ammonia removal and nitrate accumulation. Suspended solid measurements showed that MFC reduced sludge production by 52-82% as compared to aeration, and it also saved 100% of aeration energy. Furthermore, though not designed for high power generation, the MFC reactor showed a 0.3 Wh/g COD/L or 24 Wh/m3 (wastewater treated) net energy gain in electricity generation. These results demonstrate that MFC technology could be integrated into wastewater infrastructure to meet effluent quality and save operational cost.